Actions

Bibliographie Algolittéraire: Difference between revisions

From Algolit

Line 1: Line 1:
Voici les textes qui nous ont accompagné lors des sessions de travail sur le traitement du langage naturel dans l'apprentissage automatique.
+
Voici les textes qui nous ont accompagnés lors des sessions de travail sur le traitement du langage naturel dans l'apprentissage automatique.
  
====Books====
+
====Réseau neuronal et language====
*Halpern, O., 2014. ''Beautiful Data: A History of Vision and Reason since 1945'', Duke Press - https://www.dukeupress.edu/beautiful-data, http://www.orithalpern.net/
+
*CS224n: Natural Language Processing with Deep Learning (Stanford course) - http://web.stanford.edu/class/cs224n/syllabus.html
 +
*''GloVe: Global Vectors for Word Representation'' - https://nlp.stanford.edu/projects/glove/
 +
*''The Unreasonable Effectiveness of Recurrent Neural Networks'' - http://karpathy.github.io/2015/05/21/rnn-effectiveness/
  
====Articles====
+
====Biais en language====
 
*Caliskan, A., Bryson, J. J. and Narayanan, A., 2017. ''Semantics derived automatically from language corpora contain human-like biases.'' Science, 356 (6334), pp. 183-186.
 
*Caliskan, A., Bryson, J. J. and Narayanan, A., 2017. ''Semantics derived automatically from language corpora contain human-like biases.'' Science, 356 (6334), pp. 183-186.
 
*Bolukbasi, T., Chang, K. W., Zou, J. and Saligrama, V., 2016. ''Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings.'' CoRR.
 
*Bolukbasi, T., Chang, K. W., Zou, J. and Saligrama, V., 2016. ''Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings.'' CoRR.
 +
*Rob Speer, ''How to make a racist AI without really trying'' - https://gist.github.com/rspeer/ef750e7e407e04894cb3b78a82d66aed#file-how-to-make-a-racist-ai-without-really-trying-ipynb
 +
 +
====Réseau neuronal et Aprrentissage profond====
 +
*Ian Goodfellow, Yoshua Bengio and Aaron Courville, ''Deep Learning'' - http://www.deeplearningbook.org/
 +
*Michael Nielsen, ''Neural Networks and Deep Learning'' - http://neuralnetworksanddeeplearning.com
 +
 +
*''Neural Networks, Manifolds, and Topology'' - http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
 +
*''Visualizing Representations: Deep Learning and Human Beings'' - http://colah.github.io/posts/2015-01-Visualizing-Representations/
 +
 +
====Contexte général====
 +
*Halpern, O., 2014. ''Beautiful Data: A History of Vision and Reason since 1945'', Duke Press - https://www.dukeupress.edu/beautiful-data, http://www.orithalpern.net/
 +
*Hayles, Katherine N., 2016. ''Unthought. The Power of Cognitive Nonconscious''
 +
*McKenzie, Adrian, 2015. ''The production of prediction: What does machine learning want?'' http://journals.sagepub.com/doi/abs/10.1177/1367549415577384?journalCode=ecsa
 +
*Speech and Language Processing, Daniel Jurafsky and James H. Martin, Stanford University, 2017: https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
 +
 +
====Logiciels pour l'apprentissage profond et réseau nueronal====
 +
*Tensorflow (Google): https://www.tensorflow.org/
 +
Quelques introductions:
 +
*Sam Abrahams, Danijar Hafner, Erik Erwitt, Ariel Scarpinelli, ''TensorFlow for Machine Intelligence. A Hands-On Introduction to Learning Algorithms.'' Bleeding Edge Press (2016)
 +
*Rodolfo Bonnin, ''Building Machine Learning Projects with TensorFlow.'' Packt Publishing (2016)
 +
*Nick McClure, ''TensorFlow Machine Learning Cookbook.'' Packt Publishing (2017) (more in-depth but also a slightly steeper learning curve)
 +
* Scikit Learn: http://scikit-learn.org
  
====Courses====
+
====Outils de simulation====
*CS224d: Natural Language Processing with Deep Learning 2016, a course of the Stanford University by Socher, R. - https://cs224d.stanford.edu/
+
*Simulation en navigateur: http://playground.tensorflow.org
 +
*Introduction qui utilise TensorFlow: https://cloud.google.com/blog/big-data/2016/07/understanding-neural-networks-with-tensorflow-playground
  
 
[[Category:Rencontres-Algolittéraires]]
 
[[Category:Rencontres-Algolittéraires]]

Revision as of 17:50, 31 October 2017

Voici les textes qui nous ont accompagnés lors des sessions de travail sur le traitement du langage naturel dans l'apprentissage automatique.

Réseau neuronal et language

Biais en language

Réseau neuronal et Aprrentissage profond

Contexte général

Logiciels pour l'apprentissage profond et réseau nueronal

Quelques introductions:

  • Sam Abrahams, Danijar Hafner, Erik Erwitt, Ariel Scarpinelli, TensorFlow for Machine Intelligence. A Hands-On Introduction to Learning Algorithms. Bleeding Edge Press (2016)
  • Rodolfo Bonnin, Building Machine Learning Projects with TensorFlow. Packt Publishing (2016)
  • Nick McClure, TensorFlow Machine Learning Cookbook. Packt Publishing (2017) (more in-depth but also a slightly steeper learning curve)
  • Scikit Learn: http://scikit-learn.org

Outils de simulation