Rencontres Algolittéraires: Difference between revisions
From Algolit
Line 18: | Line 18: | ||
* [[i-could-have-written-that]] = [[i-could-have-written-that FR]] | * [[i-could-have-written-that]] = [[i-could-have-written-that FR]] | ||
* [[The Weekly Address, A model for a politician]] - needs check | * [[The Weekly Address, A model for a politician]] - needs check | ||
− | * [[In the company of CluebotNG]] = [[En compagnie de CluebotNG]] | + | * [[In the company of CluebotNG]] = [[En compagnie de CluebotNG]] - decide on link to False Positive page |
==Algoliterary explorations / Explorations Algolittéraires== | ==Algoliterary explorations / Explorations Algolittéraires== |
Revision as of 12:43, 31 October 2017
Hey Emma,
This is a start of the French version of the Algoliterary Encounters catalog. We marked the pages below that are ready to be translated.
It would be nice to translate the titles of the works into French as well, the titles below are still the English ones. And it would be great if you could do the headers as well.
Thanks a lot!
---
General Introduction / Introduction Générale
Algoliterary works / Oeuvres Algolittéraires
- Oulipo recipes = Recettes Oulipo
- i-could-have-written-that = i-could-have-written-that FR
- The Weekly Address, A model for a politician - needs check
- In the company of CluebotNG = En compagnie de CluebotNG - decide on link to False Positive page
Algoliterary explorations / Explorations Algolittéraires
What the Machine Writes: a closer look at the output / Ce que la machine écrit: mise au point sur la sortie
- CHARNN text generator = Générateur de texte CHARNN - needs check
- You shall know a word by the company it keeps = Vous connaîtrez un mot par la compagnie qu'il tient
How the Machine Reads: Dissecting Neural Networks / Comment la machine lit: dissection des réseaux neuronaux
Datasets / Ensemble de données
- Many many words = Beaucoup, beaucoup de mots
- The data (e)speaks = La donnée (e)parle - needs to be completed
Common public datasets / Ensembles de données publics communs
Algoliterary datasets / Ensembles de données Algolittéraires
- Frankenstein = Frankenstein FR
- Learning from Deep Learning = Apprendre de l'apprentissage profond
- nearbySaussure
- astroBlackness
From words to numbers / Des mots aux nombres
- A Bag of Words = Un sac de mots
- A One Hot Vector = Un vecteur one-hot - needs check
Exploring Multidimensional Landscapes: Word Embeddings / Exploration de paysages Multiidmensionnels: le plongement lexical
Different portraits of word embeddings / Différents portraits du plongement lexical
- Word embedding Projector = Projecteur de plongement lexical
- The GloVe Reader = Le Lecteur GloVe - Decide on Link to GloVe page...
Inspecting the technique / Inspection de la technique
- word2vec_basic.py = word2vec_basic.py FR - translated! > small updates around the change of dataset, perhaps good to check?
- Reverse Algebra - ready!
How a Machine Might Speak / Comment une machine pourrait parler
Sources
- Algoliterary Toolkit = Boîte à outils Algolittéraire- translated!
- Algoliterary Bibliography = Bibliographie Algolittéraire - translated! > updated, would be nice to translate the headers